St John Bosco RC Primary School

With Jesus in our hearts, we love, pray, learn and play.

Power Maths White Rose Edition calculation policy, LOWER KS2

KEY STAGE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.

Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

Addition and subtraction: In Year 3 especially, the column methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and children should be encouraged at every stage to make choices about which methods to apply.

In Year 4, the steps are shown without such fine detail, although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns. By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Stem Sentences:

The calculation tells me I need to add/ subtract the numbers. If the column total is equal to ten or more we must regroup. Whole minus/subtract a part is equal to the difference. I will regroup one hundred for ten tens. ____ plus ____ is equal to ____ subtract___ is equal to ____ When we subtract, we start with the whole ____ ones/tens/hundred add ____ ones/tens/hundred is equal to ____.

Multiplication and division: Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35.

Children develop key skills to support multiplication methods: unitising, commutativity, and how to use partitioning effectively.

Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving. An understanding of partitioning allows children to extend their skills to multiplying and dividing 2-and 3-digit numbers by a single digit.

Children develop column methods to support multiplications in these cases.

For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3, it is effective to partition 423 into 300, 120 and 3, as these can be divided by 3 using known facts.

Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

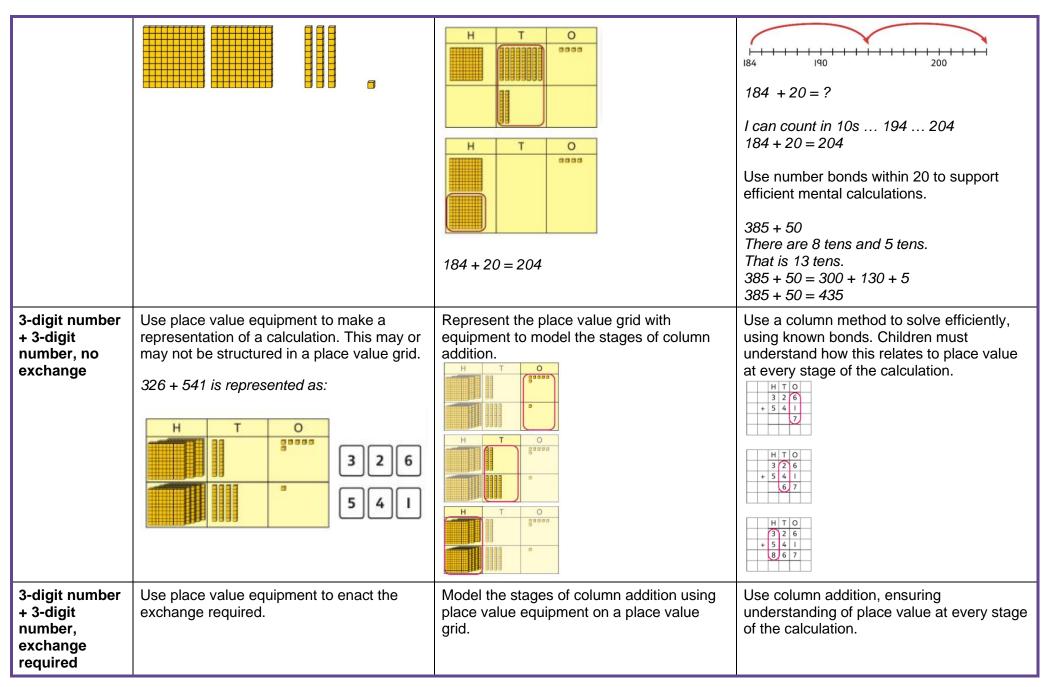
Stem Sentences:

To find ten times as many, multiply by ten is a multiple
of because multiplied by is equal to
divided by is equal to Products in the
time table are also in the time table. When we
multiply, the parts are known but the whole is unknown.
When we divide, the whole is known and the number or parts
or the value of the parts is also known x is the
same as groups of

Fractions: Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount and develop this with the aid of a bar model and other representations alongside.

in Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than 1. In Year 4, children begin to work with fractions greater than 1.

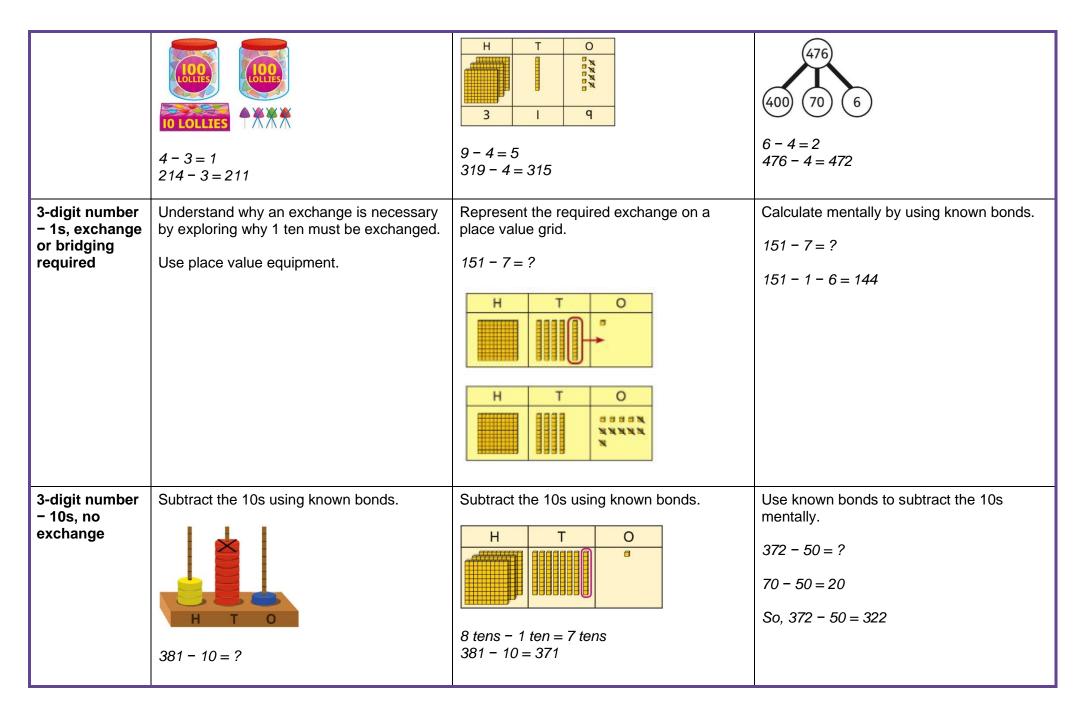
Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100, and also with place value.

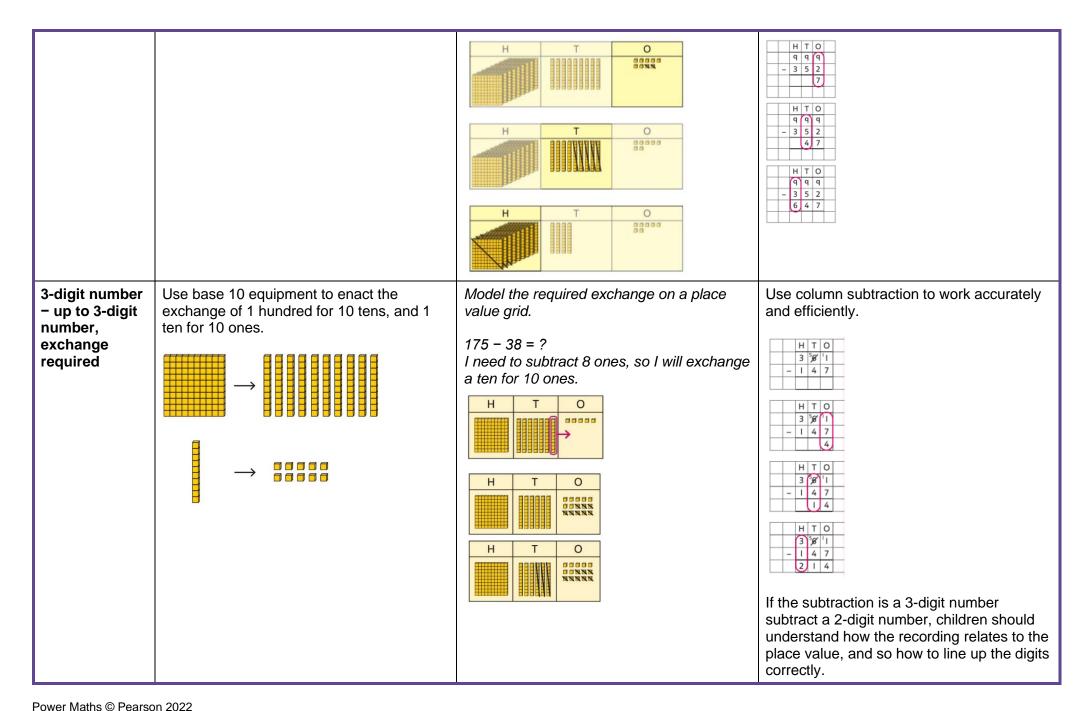

Stem Sentences:

If in the whole then	is part of the who	lo Tho
If $_{}$ is the whole, then $_{}$	is part of the who	ie. The
whole has been divided into	equal/unequal	parts. The
whole has been divided into	equal parts	of the
parts has been shaded. The	denominator is	_ because
the whole is divided into	_ equal parts. When	the
numerator and denominator	are the same, the fra	action is
equivalent to one whole.		

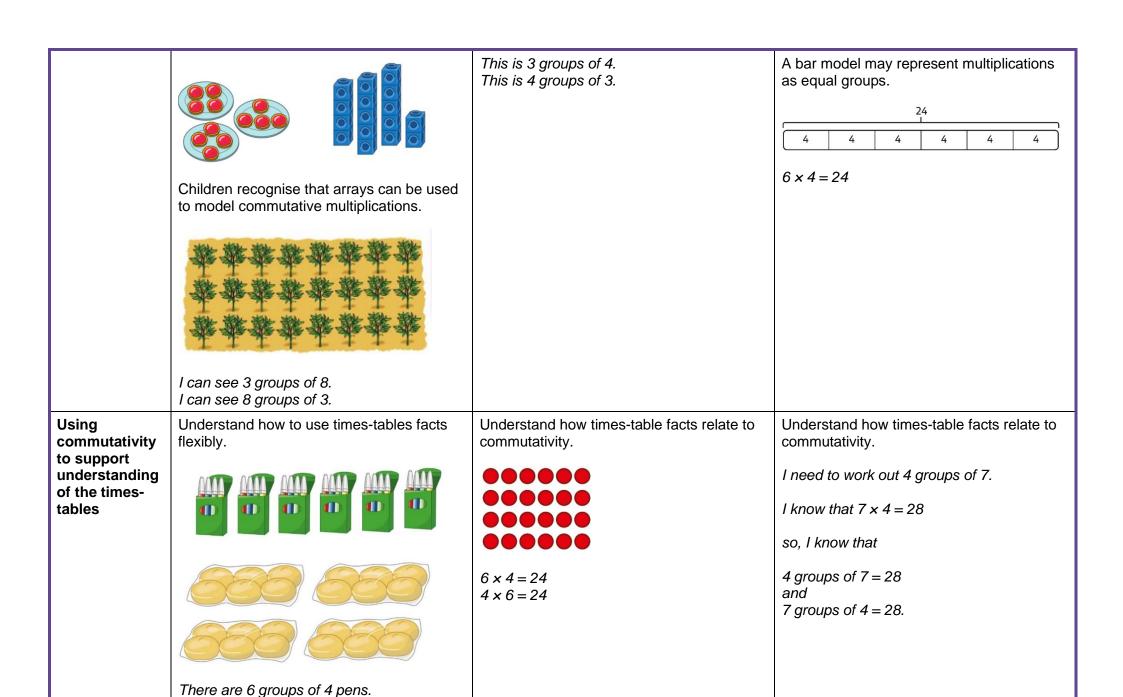
	Year 3			
	Concrete	Pictorial	Abstract	
Year 3 Addition				
Understanding 100s	Understand the cardinality of 100, and the link with 10 tens. Use cubes to place into groups of 10 tens.	Unitise 100 and count in steps of 100.	Represent steps of 100 on a number line and a number track and count up to 1,000 and back to 0.	
Understanding place value to 1,000	Unitise 100s, 10s and 1s to build 3-digit numbers.	Use equipment to represent numbers to 1,000. 200 240 241 Use a place value grid to support the structure of numbers to 1,000. Place value counters are used alongside other equipment. Children should understand how each counter represents a different unitised amount.	Represent the parts of numbers to 1,000 using a part-whole model. 215 $215 = 200 + 10 + 5$ Recognise numbers to 1,000 represented on a number line, including those between intervals.	
Adding 100s	Use known facts and unitising to add multiples of 100.	Use known facts and unitising to add multiples of 100.	Use known facts and unitising to add multiples of 100.	

		3 + 4 = 7 $3 hundreds + 4 hundreds = 7 hundreds$ $300 + 400 = 700$	Represent the addition on a number line. Use a part-whole model to support unitising. $3 + 2 = 5$ $300 + 200 = 500$
3-digit number + 1s, no exchange or bridging	Use number bonds to add the 1s. 214 + 4 = ? Now there are $4 + 4$ ones in total. $4 + 4 = 8$ 214 + 4 = 218	Use number bonds to add the 1s. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Understand the link with counting on. $245 + 4$ $245 + 4$ Use number bonds to add the 1s and understand that this is more efficient and less prone to error. $245 + 4 = ?$ I will add the 1s. $5 + 4 = 9$ So, $245 + 4 = 249$
3-digit number + 10s, no exchange	Calculate mentally by forming the number bond for the 10s.	Calculate mentally by forming the number bond for the 10s.	Calculate mentally by forming the number bond for the 10s.


	234 + 50 There are 3 tens and 5 tens altogether. $3 + 5 = 8$ In total there are 8 tens.	351 + 30 = ? 5 tens + 3 tens = 8 tens 351 + 30 = 381	753 + 40 I know that $5 + 4 = 9$ So, $50 + 40 = 90$ $753 + 40 = 793$
3-digit number + 1s with exchange	Understand that when the 1s sum to 10 or more, this requires an exchange of 10 ones for 1 ten. Children should explore this using unitised objects or physical apparatus.	Exchange 10 ones for 1 ten where needed. Use a place value grid to support the understanding. H T O H T O H T O T T O T T T T T T T	Understand how to bridge by partitioning to the 1s to make the next 10. $ \begin{array}{c} 7 \\ \hline 5 \\ \hline 2 \end{array} $ $ \begin{array}{c} 135 + 7 = ? \\ 135 + 5 + 2 = 142 \end{array} $ Ensure that children understand how to add 1s bridging a 100. $ \begin{array}{c} 198 + 5 = ? \end{array} $
3-digit number + 10s, with exchange	Understand the exchange of 10 tens for 1 hundred.	Add by exchanging 10 tens for 1 hundred. $184 + 20 = ?$	198 + 2 + 3 = 203 Understand how the addition relates to counting on in 10s across 100.


	There are 13 ones. I will exchange 10 ones for 1 ten.		H T O 1 2 6 + 2 1 7 1 2 6 + 2 1 7 1 2 6 + 2 1 7 1 3 4 3 1 1 2 6 + 2 1 7 3 4 3 Note: Children should also study examples where exchange is required in more than one column, for example 185 + 318 = ?
3-digit number + 2-digit number	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinking and adding of 1s, then 10s.	Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.
3-digit number + 2-digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent 154 + 72. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. 275 + 16 = ?	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation.

		275 + 16 = 291 Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	H T O 2 7 5 + 1 6 2 7 5 + 1 6 9 1 1 1 275 + 16 = 291
Representing addition problems, and selecting appropriate methods	Encourage children to use their own drawings and choices of place value equipment to represent problems with one or more steps. These representations will help them to select appropriate methods.	Children understand and create bar models to represent addition problems. $275 + 99 = ?$ 374 $275 + 99 = 374$	Use representations to support choices of appropriate methods. ? 275 qq I will add 100, then subtract 1 to find the solution. 128 + 105 + 83 = ?


			I need to add three numbers. 128 + 105 = 233 233 128
Year 3 Subtraction			233 83
Subtracting 100s	Use known facts and unitising to subtract multiples of 100. 100 bricks 100 bricks 100 bricks 5-2=3 500-200=300	Use known facts and unitising to subtract multiples of 100. 4 - 2 = 2 400 - 200 = 200	Understand the link with counting back in 100s. 100s. 100
3-digit number – 1s, no exchange	Use number bonds to subtract the 1s. 214 - 3 = ?	Use number bonds to subtract the 1s. H T O 319 $-4 = ?$	 700 - 400 = 300. Understand the link with counting back using a number line. Use known number bonds to calculate mentally. 476 - 4 = ?

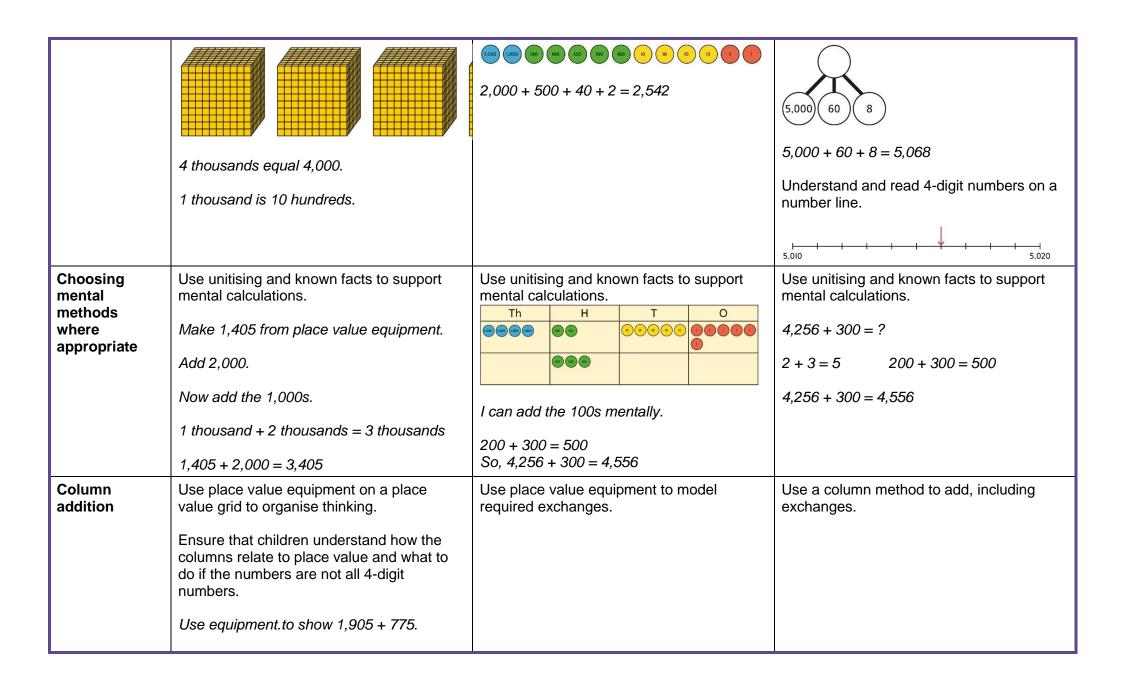
	8 tens with 1 removed is 7 tens.		
	381 - 10 = 371		
3-digit number – 10s, exchange or	Use equipment to understand the exchange of 1 hundred for 10 tens.	Represent the exchange on a place value grid using equipment.	Understand the link with counting back on a number line.
bridging required		210 - 20 = ? H T O	Use flexible partitioning to support the calculation. $235 - 60 = ?$
			235
		I need to exchange 1 hundred for 10 tens, to help subtract 2 tens.	(100) (130) (5)
		H T O	235 = 100 + 130 + 5 $235 - 60 = 100 + 70 + 5$ $= 175$
		210 - 20 = 190	
3-digit number – up to 3-digit number	Use place value equipment to explore the effect of splitting a whole into two parts, and understand the link with taking away.	Represent the calculation on a place value grid.	Use column subtraction to calculate accurately and efficiently.



Representing subtraction problems		Use bar models to represent subtractions. 'Find the difference' is represented as two bars for comparison. Team A 454 Team B 128 ? Bar models can also be used to show that a part must be taken away from the whole.	Children should also understand how to exchange in calculations where there is a zero in the 10s column. Children use alternative representations to check calculations and choose efficient methods. Children use inverse operations to check additions and subtractions. The part-whole model supports understanding. I have completed this subtraction. 525 - 270 = 255 I will check using addition.
Year 3 Multiplication			
Understanding equal grouping and repeated addition	Children continue to build understanding of equal groups and the relationship with repeated addition. They recognise both examples and non-examples using objects.	Children recognise that arrays demonstrate commutativity.	Children understand the link between repeated addition and multiplication. $ \begin{array}{cccccccccccccccccccccccccccccccccc$

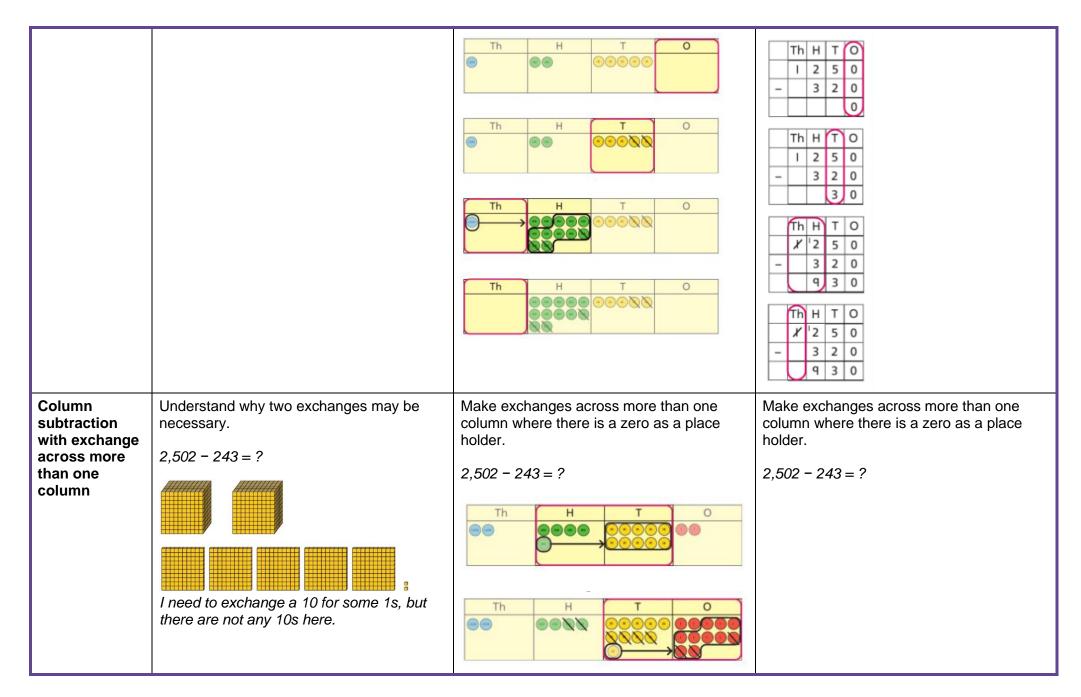
	There are 4 groups of 6 bread rolls.		
	I can use $6 \times 4 = 24$ to work out both totals.		
Understanding and using ×3, ×2, ×4 and ×8 tables.	Children learn the times-tables as 'groups of' but apply their knowledge of commutativity.	Children understand how the x2, x4 and x8 tables are related through repeated doubling.	Children understand the relationship between related multiplication and division facts in known times-tables.
tables			5 2
	I can use the ×3 table to work out how many keys. I can also use the ×3 table to work out how many batteries.	3 × 2 = 6 3 × 4 = 12 3 × 8 = 24	$2 \times 5 = 10$ $5 \times 2 = 10$ $10 \div 5 = 2$ $10 \div 2 = 5$
Using known facts to multiply 10s, for example 3 × 40	Explore the relationship between known times-tables and multiples of 10 using place value equipment.	Understand how unitising 10s supports multiplying by multiples of 10.	Understand how to use known times-tables to multiply multiples of 10.
	Make 4 groups of 3 ones.		0 1 2 3 4 5 6 7 8
	Make 4 groups of 3 tens.	10 10 10 10	0 10 20 30 40 50 60 70 80
		4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens.	$4 \times 2 = 8$ $4 \times 20 = 80$

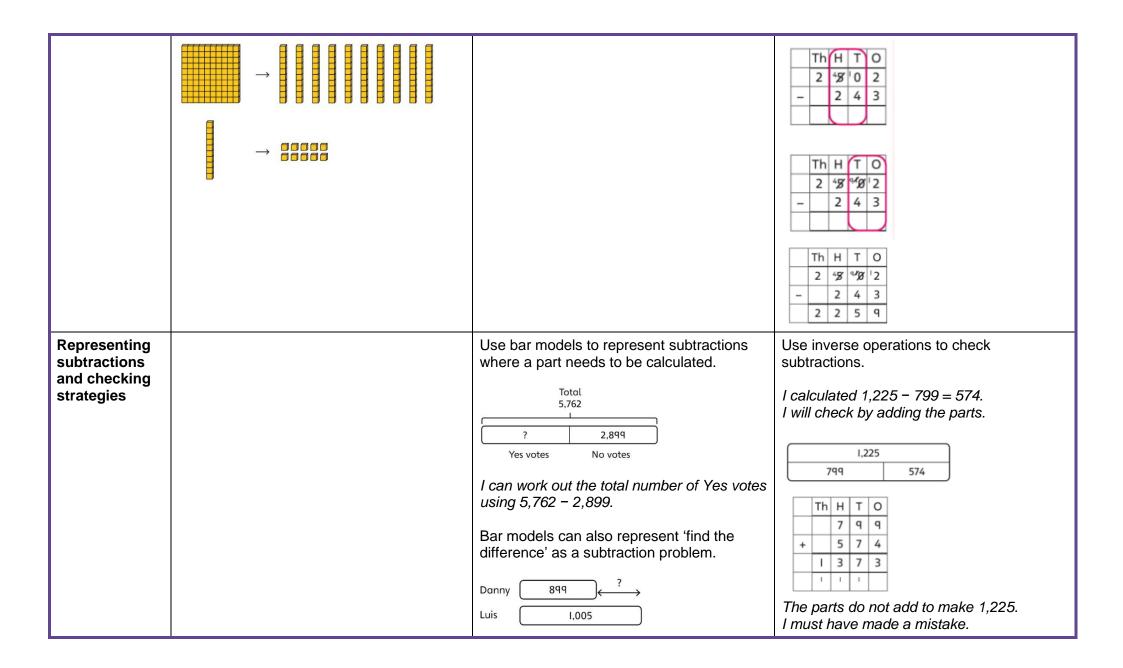
	What is the same? What is different?	$4 \times 2 = 8$ $4 \times 20 = 80$	
Multiplying a 2-digit number by a 1-digit number	Understand how to link partitioning a 2-digit number with multiplying. Each person has 23 flowers. Each person has 2 tens and 3 ones. There are 3 groups of 2 tens. There are 3 groups of 3 ones. Use place value equipment to model the multiplication context.	Use place value to support how partitioning is linked with multiplying by a 2-digit number. $3 \times 24 = ?$ T O 3 × 4 = 12 $3 \times 4 = 12$ $3 \times 20 = 60$ $60 + 12 = 72$	Use addition to complete multiplications of 2-digit numbers by a 1-digit number. $4 \times 13 = ?$ $4 \times 3 = 12$ $4 \times 10 = 40$ $12 + 40 = 52$ $4 \times 13 = 52$
	There are 3 groups of 3 ones. There are 3 groups of 2 tens.	3 × 24 = 72	
Multiplying a 2-digit number by a 1-digit	Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications.	Understand that multiplications may require an exchange of 1s for 10s, and also 10s for 100s.	Children may write calculations in expanded column form, but must understand the link with place value and exchange.



knowledge to divide I need to work out 30 shared between 5. I know that $6 \times 5 = 30$ so I know that $30 \div 5 = 6$. 24 divided into groups of 8. There are 3 groups of 8. A bar model may represent the relationship between sharing and grouping. $24 \div 4 = 6$ $24 \div 6 = 4$ Children understand how division is related to both repeated subtraction and repeated 48 divided into groups of 4. addition. There are 12 groups. $4 \times 12 = 48$ $48 \div 4 = 12$ $24 \div 8 = 3$ 24 32 $32 \div 8 = 4$ **Understanding** Use equipment to understand that a Use images to explain remainders. Understand that the remainder is what remainders remainder occurs when a set of objects cannot be shared equally from a set. cannot be divided equally any further.

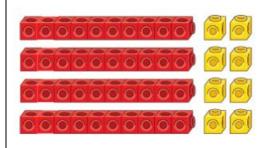
 $22 \div 5 = ?$


	The wear and 40 offering in the first	00 - 5 - 4	
	There are 13 sticks in total. There are 3 groups of 4, with 1 remainder.	22 ÷ 5 = 4 remainder 2	$3 \times 5 = 15$ $4 \times 5 = 20$ $5 \times 5 = 25 \dots$ this is larger than 22 So, $22 \div 5 = 4$ remainder 2
Using known facts to divide multiples of 10	Use place value equipment to understand how to divide by unitising. Make 6 ones divided by 3. Now make 6 tens divided by 3. What is the same? What is different?	Divide multiples of 10 by unitising. 12 tens shared into 3 equal groups. 4 tens in each group.	Divide multiples of 10 by a single digit using known times-tables. $180 \div 3 = ?$ $180 \text{ is } 18 \text{ tens.}$ $18 \text{ divided by } 3 \text{ is } 6.$ $18 \text{ tens divided by } 3 \text{ is } 6 \text{ tens.}$ $18 \div 3 = 6$ $180 \div 3 = 60$
2-digit number divided by 1-digit number, no remainders	Children explore dividing 2-digit numbers by using place value equipment. $48 \div 2 = ?$ First divide the 10s.	Children explore which partitions support particular divisions. I need to partition 42 differently to divide by 3.	Children partition a number into 10s and 1s to divide where appropriate. $60 \div 2 = 30$ $8 \div 2 = 4$ $68 \div 2 = 34$ Children partition flexibly to divide where appropriate. $42 \div 3 = ?$ $42 = 40 + 2$


2-digit number divided by 1-digit number, with remainders	Then divide the 1s. Use place value equipment to understand the concept of remainder. Make 29 from place value equipment. Share it into 2 equal groups. There are two groups of 14 and 1 remainder.	$42 = 30 + 12$ $42 \div 3 = 14$ Use place value equipment to understand the concept of remainder in division. $29 \div 2 = ?$ $29 \div 2 = 14 \text{ remainder 1}$	I need to partition 42 differently to divide by 3. $42 = 30 + 12$ $30 \div 3 = 10$ $12 \div 3 = 4$ $10 + 4 = 14$ $42 \div 3 = 14$ Partition to divide, understanding the remainder in context. 67 children try to make 5 equal lines. $67 = 50 + 17$ $50 \div 5 = 10$ $17 \div 5 = 3$ remainder 2 $67 \div 5 = 13$ remainder 2 There are 13 children in each line and 2 children left out.
		Year 4	
	Concrete	Pictorial	Abstract
Year 4 Addition	Stem Sentences: The calculation tells me I need to add/subtract the numbers. If the column total is equal to ten or more we must regroup. Whole minus/subtract a part is equal to the difference. I will regroup one hundred for ten tens plus is equal to thousand add thousand is equal to		
Understanding numbers to 10,000	Use place value equipment to understand the place value of 4-digit numbers.	Represent numbers using place value counters once children understand the relationship between 1,000s and 100s.	Understand partitioning of 4-digit numbers, including numbers with digits of 0.

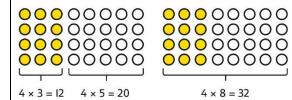
		T	T
Representing	Th H T O O O O O O O O O O O O O O O O O O	Include examples that exchange in more than one column. Bar models may be used to represent	Th H T O 1 5 5 4 + 4 2 3 7 Th H T O 1 5 5 4 + 4 2 3 7 Th H T O 1 5 5 4 + 4 2 3 7 7 9 1 Include examples that exchange in more than one column. Use rounding and estimating on a number
additions and checking strategies		additions in problem contexts, and to justify mental methods where appropriate. I,225 799 574 Th H T O 7 9 9 + 5 7 4 I 3 7 3 I chose to work out 574 + 800, then subtract 1.	line to check the reasonableness of an addition. 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 912 + 6,149 = ? I used rounding to work out that the answer should be approximately 1,000 + 6,000 = 7,000.

		2,999 3,001 This is equivalent to 3,000 + 3,000.	
Year 4 Subtraction	Stem sentences: When we subtract, we start with the whole tenths/hundredths plus tenths/hundredths is equal to tenths/hundredths minus tenths/hundredths is equal to		
Choosing mental methods where appropriate	Use place value equipment to justify mental methods. What number will be left if we take away 300?	Use place value grids to support mental methods where appropriate. The Hamiltonian To O O O O O O O O O O O O O O O O O O	Use knowledge of place value and unitising to subtract mentally where appropriate. 3,501 - 2,000 3 thousands - 2 thousands = 1 thousand 3,501 - 2,000 = 1,501
Column subtraction	Understand why exchange of a 1,000 for 100s, a 100 for 10s, or a 10 for 1s may be necessary.	Represent place value equipment on a place value grid to subtract, including exchanges where needed.	Use column subtraction, with understanding of the place value of any exchange required.



Year 4 Multiplication	Stem sentences: When zero is a factor, the product is zero. For every group of one twelve, there are two groups of six. All multiple of tens have a ones digit of zero. Products in the time table are also in the time table. All multiples of one hundred have both a tens and ones digit of zero.			
Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1, 10 and 100. 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	Use unitising and place value equipment to understand how to multiply by multiples of 1, 10 and 100. 3 × 4 = 12 3 × 40 = 120 3 × 400 = 1,200	Use known facts and understanding of place value and commutativity to multiply mentally. $4 \times 7 = 28$ $4 \times 70 = 280$ $40 \times 7 = 280$ $4 \times 700 = 2,800$ $400 \times 7 = 2,800$	
Understanding times-tables up to 12 × 12	Understand the special cases of multiplying by 1 and 0.	Represent the relationship between the ×9 table and the ×10 table.	Understand how times-tables relate to counting patterns. Understand links between the x3 table, x6 table and x9 table 5 x 6 is double 5 x 3 x5 table and x6 table	
	5 x 1 = 5	Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $2 \times 11 = 20 + 2$ $3 \times 11 = 30 + 3$ $4 \times 11 = 40 + 4$	I know that $7 \times 5 = 35$ so I know that $7 \times 6 = 35 + 7$. ×5 table and ×7 table $3 \times 7 = 3 \times 5 + 3 \times 2$ 3×5 3×2 3×5 3×2 3×7 ×9 table and ×10 table $6 \times 10 = 60$ $6 \times 9 = 60 - 6$	

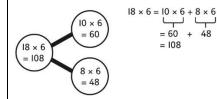
Understanding and using partitioning in multiplication


Make multiplications by partitioning.

 4×12 is 4 groups of 10 and 4 groups of 2.

$$4 \times 12 = 40 + 8$$

Understand how multiplication and partitioning are related through addition.



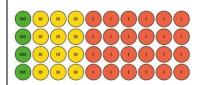
$$4 \times 3 = 12$$

 $4 \times 5 = 20$
 $12 + 20 = 32$

$$4 \times 8 = 32$$

Use partitioning to multiply 2-digit numbers by a single digit.

$$18 \times 6 = ?$$



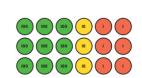
$$18 \times 6 = 10 \times 6 + 8 \times 6$$

= $60 + 48$
= 108

Column multiplication for 2- and 3-digit numbers multiplied by a single digit

Use place value equipment to make multiplications.

Make 4 x 136 using equipment.



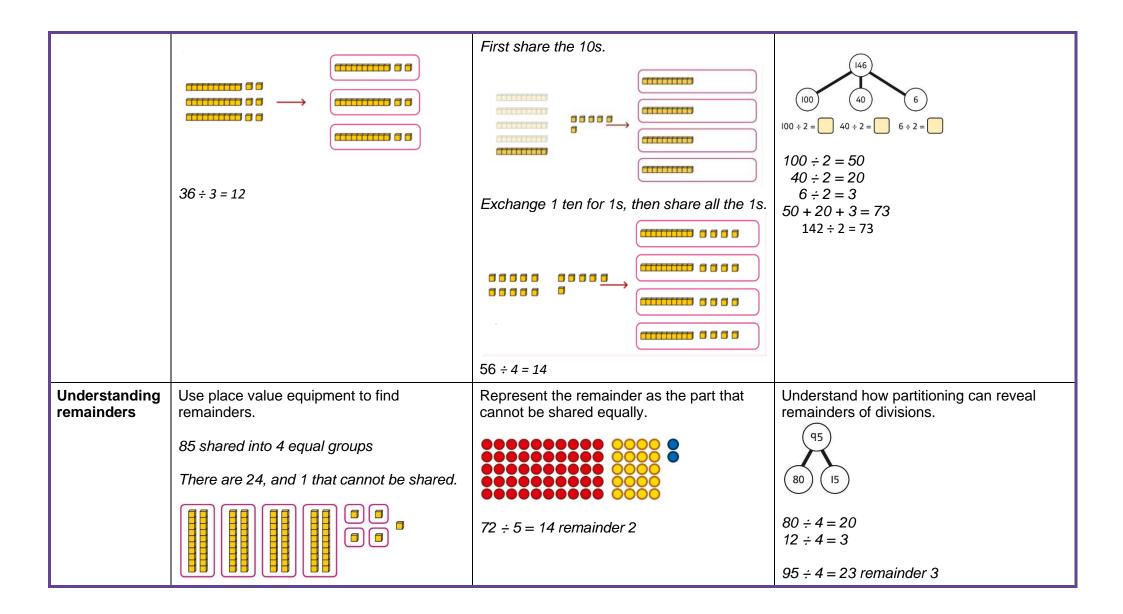
I can work out how many 1s, 10s and 100s.

There are 4×6 ones... 24 ones There are 4×3 tens ... 12 tens There are 4×1 hundreds ... 4 hundreds

24 + 120 + 400 = 544

Use place value equipment alongside a column method for multiplication of up to 3-digit numbers by a single digit.

	Н	Т	0
	3	Τ	2
×			3
	q	3	6


Use the formal column method for up to 3-digit numbers multiplied by a single digit.

	Н	Т	0
	3	1	2
×			3
	q	3	6

Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.

			H T O 2 3 X 5 H T O 2 3 X 5 H T O 2 3 X 5 H T O 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1
Multiplying more than two numbers	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are $5 \times 2 \times 3$ stickers in total. $5 \times 2 \times 3 = 30$ $10 \times 3 = 30$	Understand that commutativity can be used to multiply in different orders. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Use knowledge of factors to simplify some multiplications. $24 \times 5 = 12 \times 2 \times 5$ $12 \times 2 \times 5 = 20$ $12 \times 10 = 120$ So, $24 \times 5 = 120$
Year 4 Division		s of There are groups and a remains known and the number or parts or the value of	
Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts.	Represent divisions using an array.	Understand families of related multiplication and division facts. I know that $5 \times 7 = 35$ so I know all these facts: $5 \times 7 = 35$

	24 is 6 groups of 4. 24 is 4 groups of 6. 24 divided by 6 is 4. 24 divided by 4 is 6.	28 ÷ 7 = 4	$7 \times 5 = 35$ $35 = 5 \times 7$ $35 = 7 \times 5$ $35 \div 5 = 7$ $35 \div 7 = 5$ $7 = 35 \div 5$ $5 = 35 \div 7$
Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide. 8 ones divided into 2 equal groups 4 ones in each group 8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 hundreds in each group	Represent divisions using place value equipment. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Use known facts to divide 10s and 100s by a single digit. $15 \div 3 = 5$ $150 \div 3 = 50$ $1500 \div 3 = 500$
Divide by sharing	Share using place value equipment 36 shared equally between 3 groups	Share by exchanging 56 shared equally between 4 groups	Share using known facts and partitioning where appropriate $142 \div 2 = ?$

