St John Bosco RC Primary School

With Jesus in our hearts, we love, pray, learn and play.

Power Maths White Rose Edition calculation policy, KS1

The following pages show the Power Maths White Rose Edition progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across Power Maths White Rose Edition helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

KEY STAGE 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10 s and 1 s to develop their calculation strategies, especially in addition and subtraction.

Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to

 connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10 s , to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations.A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with 15-3 and 15-13, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.

Stem sentences:

\qquad
equal to is equal to subtract is

When we subtract, we start with the whole
The whole is The parts are and To I need to ce between and and have a difference of \qquad an b

Multiplication and division: Children develop an

 awareness of equal groups and link this with counting in equal steps, starting with 2s, 5 s and 10 s . In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.
In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations.

Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2,5 and 10 times-tables and how they are related to counting.

Stem sentences:

\qquad groups of \qquad are equ ual to \qquad shared equally into groups of ___ makes___ groups. I shared ___ into \qquad equal groups. There are in each group.
The pattern is increasing in \qquad
The pattern is decreasing in \qquad There are ___ groups of ten.
There are \qquad ones. \qquad groups of of ten are equal to
There will be____i_ in each group.

Fractions: In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and non-examples, based on their awareness of equal parts of a whole.

In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

Stem sentences:

Half of \qquad is equal to \qquad When I halve a number, I make two equal parts A half is one of two equal parts.
There are \qquad parts in total. parts are shaded

Year 1

	Concrete	Pictorial	Abstract
Year 1 Addition			
Counting and adding more	Children add one more person or object to a group to find one more.	Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Use a number line to understand how to link counting on with finding one more. One more than 6 is 7. 7 is one more than 6 . Learn to link counting on with adding more than one. $5+3=8$
Understanding part-part-whole relationship	Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4 . The whole is 6 .	Children draw to represent the parts and understand the relationship with the whole. The parts are 2 and 4 . The whole is 6 .	Use a part-whole model to represent the numbers. $2+4=6$
Knowing and finding number bonds within 10	Break apart a group and put back together to find and form number bonds.	Use five and ten frames to represent key number bonds.	Use a part-whole model alongside other representations to find number bonds.

Power Maths © Pearson 2022
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for
Understanding
teen numbers as
a complete 10
and some more

[^0]	Subtraction
Counting back and taking away	
Children arrange objects and remove to find	
how many are left.	
Finding a	
missing part,	
given a whole	
and a part	

Power Maths © Pearson 2022
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

	8 is 2 more than 6 . 6 is 2 less than 8. The difference between 8 and 6 is 2 .	$5-4=1$ The difference between 5 and 4 is 1 .	$10-4=6$ The difference between 10 and 6 is 4 .
Year 1 Multiplication			
Recognising and making equal groups	Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal. A B C	Children draw and represent equal and unequal groups. $\begin{array}{ccc} \text { A } 0 & 0 & 0 \\ \triangle \Delta & \triangle \triangle & \Delta \Delta \end{array}$	Three equal groups of 4. Four equal groups of 3 .
Finding the total of equal groups by counting in 2s, 5s and 10s	There are 5 pens in each pack... 5...10...15...20...25...30...35...40...	100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .
Year 1 Division			
Grouping	Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups.	Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	Children may relate this to counting back in steps of 2,5 or 10.

Power Maths © Pearson 2022
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

	There are 10 children altogether. There are 2 in each group. There are 5 groups.		
Sharing	Share a set of objects into equal parts and work out how many are in each part.	Sketch or draw to represent sharing into equal parts. This may be related to fractions.	10 shared into 2 equal groups gives 5 in each group.

Power Maths © Pearson 2022

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

	Concrete	Pictorial	Abstract
Year 2 Addition			
Understanding 10s and 1s	Group objects into 10s and 1s. Bundle straws, pencils or pens to understand unitising of 10 s .	Understand 10s and 1s equipment, and link with visual representations on ten frames. Represent numbers on a place value grid, using equipment or numerals.	Partition 2-digit numbers into 10 s and 1 s $32=30+2$
Learn bonds within 10	Systematically build confidence and fluency in recall of number bonds within 10	Systematically build confidence and fluency in recall of number bonds within 10	Systematically build confidence and fluency in recall of number bonds within 10

[^1]| | Double 4
 $4+4=8$. This is a double | This is a bond to $10.9+1=10$ | | | $4+1$ | -2 | | $0+4$
 $1+4$
 $2+4$
 $3+4$
 $3+4$
 $4+4$
 $5+4$
 $6+4$ | $3+5$ $4+5$ $5+5$ | +6 |
 $0+7$
 $1+7$
 1+7
 2+7
 $3+7$ | 0+8 1+8 2+8 | 9
 $0+9$
 $1+9$ | 10 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Adding the 1s | Children represent 10s and 1 s with everyday items. | Children represent calculations using ten frames to add a teen and 1 s . $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$ | Children recognise that a teen is made from a 10 and some 1 s and use their knowledge of addition within 10 to work efficiently. $3+5=8$
 So, $13+5=18$ | | | | | | | | | | | |
| Bridging 10 using number bonds | Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 . | Use a part-whole model and a number line to support the calculation. | Children use a bead string to complete a 10 and understand how this relates to the addition.
 7 add 3 makes 10.
 So, 7 add 5 is 10 and 2 more. | | | | | | | | | | | |
| Add two multiples of 10 | Use known bonds and unitising to add 10s. | Use known bonds and unitising to add 10s. | Use known bonds and unitising to add 10s. | | | | | | | | | | | |

Add a 2-digit
number and 1 s
Add the 1 s to find the total. Use known
bonds within 10.

	$8+2=10$ So $28+2=30$	$\begin{aligned} & 3+\square=10 \\ & 33+\square=40 \\ & 43+\square=50 \\ & 73+\square=80 \end{aligned}$	60 55 $?$$55+\square=60$$86+\square=90$
Add across a 10	Use place value equipment to support adding across any multiple of 10 $\begin{aligned} & 45+5+2=52 \\ & 45+7=52 \end{aligned}$	Add across any multiple of 10 using two jumps $\begin{aligned} & 45+5+2=52 \\ & 45+7=52 \end{aligned}$	Add across any multiple of 10 using two steps $\begin{aligned} & 45+5+2=52 \\ & 45+7=52 \end{aligned}$
Add 10s to a 2digit number	Add the 10 s using a place value grid to support, using classroom items to represent the numbers.	Add the 10s using a place value grid to support.	Use known bonds and knowledge of place value to add multiples of 10 $16+30=?$

[^2]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

	T 0 10 d 20 10 10 10 20 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	1 ten +3 tens is 4 tens There are 4 tens and 6 ones in total. $16+30=46$ Count on in tens from a given number 'Start on 16', '26’, '36’, '46' $16+30=46$
Add more 10s then more 1s	Add on from a 2-digit number by adding tens then ones. आ1ा11110 $+$ Start on "23", "33", "35"	Add on from a 2-digit number by adding 10s then 1 s . $23+12=23+10+2$	Add on from a 2-digit number by adding tens then ones. $23+12=23+10+2$
Add the 1s and 10s separately	Add the 10 s and 1 s separately. $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total.	Add the 1 s and the 10 s then recombine 3 ones and 4 ones is 7 ones	Add the 10s and 1s separately. $\begin{aligned} & 32+11 \\ & 30+10=40 \\ & 32+11=43 \end{aligned}$

Power Maths © Pearson 2022
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

	$35+23=58$	4 tens and 3 tens is 7 tens $43+34=77$	
Year 2 Subtraction			
Subtract two multiples of 10	Use known number bonds and unitising to subtract multiples of 10. 8 subtract 6 is 2 . So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10 . 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtraction within 20	Subtraction within 20 Understand when and how to subtract 1s efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	Subtraction within 20 Understand how to use knowledge of bonds within 10 to subtract efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	Subtraction within 20 Understand when and how to subtract 1s efficiently. Use a bead string to subtract 1 s efficiently. $\begin{gathered} 5-3=2 \\ 15-3=12 \end{gathered}$
Subtracting 10s and 1s	Subtracting 10s and 1s For example: 18-12 Use ten frames to represent the efficient method of subtracting 12.	Subtracting 10s and 1s Use a part-whole model to support the calculation.	Subtracting 10s and 1s For example: 18-12 First subtract the 10, then take away 2.

[^3]| | First subtract the 10, then subtract 2. | $\begin{gathered} 19-10=9 \\ 9-4=5 \\ \text { So, } 19-14=5 \end{gathered}$ | |
| :---: | :---: | :---: | :---: |
| Subtraction bridging 10 using number bonds | Subtraction bridging 10 using number bonds
 Represent the use of bonds using ten frames.
 For 13 - 5, I take away 3 to make 10, then take away 2 to make 8. | Subtraction bridging 10 using number bonds
 Use a number line and a part-whole model to support the method. | Subtraction bridging 10 using number bonds
 For example: 12-7
 Arrange objects into a 10 and some 1 s , then decide on how to split the 7 into parts.
 7 is 2 and 5 , so I take away the 2 and then the 5 . |
| Subtracting a single-digit number | Subtract the 1s. This may be done in or out of a place value grid using classroom items to represent the numbers.
 " 9 ones subtract 3 ones is 6 ones" $39-3=36$ | Subtract the 1s. This may be done in or out of a place value grid.
 " 9 ones subtract 3 ones is 6 ones" $39-3=36$ | Subtract the 1s. Understand the link between counting back and subtracting the 1s using known bonds. $9-3=6$ $39-3=36$ |
| Subtracting a single-digit | Bridge 10 by using known bonds. | Bridge 10 by using known bonds. | Bridge 10 by using known bonds. |

number bridging 10	$35-6$ I took away 5 counters, then 1 more.	$35-6$ First, I will subtract 5, then 1.	$\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$
Subtract tens from a 2-digit number		Subtract tens using known bonds $57-10=47$	Subtract tens using known bonds $43-10=33$
Subtract ones from a 2-digit number	Subtract the 1s. This may be done in or out of a place value grid. 9 ones subtract 3 ones is 6 ones. $39-3=36$	Subtract the 1s. This may be done in or out of a place value grid. 9 ones subtract 3 ones is 6 ones. $39-3=36$	Subtract the 1s. Understand the link between counting back and subtracting the 1s using known bonds. $9-3=6$ $39-3=36$

Subtract tens and ones from a 2-digit number	Subtract 10s then 1 s using place value equipment. $\begin{aligned} & 25-10-2=13 \\ & 25-12=13 \end{aligned}$	Subtract 10s then 1 s with a number line for visual support. $\begin{aligned} & 25-10-2=13 \\ & 25-12=13 \end{aligned}$	Subtract 10 s then 1 s . $\begin{aligned} & 25-10-2=13 \\ & 25-12=13 \end{aligned}$
Subtract ones from a multiple of 10 (preparation for bridging)	Subtract from a 10 using known bonds to 10 using place value equipment. $30-3=27$	Subtract from a 10 using known bonds to 10. $50-2=48$	Subtract from a 10 using known bonds to 10. $\begin{aligned} & 10-3=7 \\ & 30-3=27 \\ & 60-3=57 \\ & 90-3=87 \end{aligned}$
Subtract bridging a ten	Subtract in two steps, across a 10 with place value equipment.	Subtract in two steps, across a 10 with a number line for visual support.	Subtract in two steps, across a 10. $41-6=41-1-5$

Power Maths © Pearson 2022
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

	$35-5=30$	$35-5-1=29$	$41-6=35$
Year 2 Multiplication			
Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication.	Use a number line and write as repeated addition and as multiplication. $\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$
Using arrays to represent multiplication and support understanding	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.

	 4 groups of 5	4 groups of $5 \ldots 5$ groups of 5	
Understanding commutativity	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$
Learning $\times 2$, $\times 5$ and $\times 10$ table facts	Develop an understanding of how to unitise groups of 2, 5 and 10 and learn corresponding times-table facts.	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts. OOOOOOOOOO 0000000000 0000000000	Understand how the times-tables increase and contain patterns.

Power Maths © Pearson 2022
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

	$\begin{aligned} & 3 \text { groups of } 10 \ldots 10,20,30 \\ & 3 \times 10=30 \end{aligned}$	$\begin{aligned} & 10+10+10=30 \\ & 3 \times 10=30 \end{aligned}$	
Year 2 Division			

Power Maths © Pearson 2022
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

Sharing equally	Start with a whole and share into equal parts, one at a time. 12 shared equally between 2. They get 6 each. Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared They get 5 each. 15 shared equally between 3. They get 5 each.	Represent the objects shared into equal parts using a bar model. 20 shared into 5 equal parts. There are 4 in each part.	Use a bar model to support understanding of the division. $18 \div 2=9$
Grouping equally	Understand how to make equal groups from a whole. \square \square \square \square	Understand the relationship between grouping and the division statements.	Understand how to relate division by grouping to repeated subtraction.

8 divided into 4 equal groups.
There are 2 in each group.
Using known
times-tables to
solve divisions

[^0]: Power Maths © Pearson 2022
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

[^1]: Power Maths © Pearson 2022
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

[^2]: Power Maths © Pearson 2022

[^3]: Power Maths © Pearson 2022
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for

